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ABSTRACT 

For a large class of B a n a c h  spaces,  a general  cons t ruc t ion  of subspazes  

wi thout  local uncondi t iona l  s t ruc tu re  is presented.  As an appl ica t ion it 

is shown t h a t  every B a n a c h  space of finite cotype  conta ins  e i ther  12 or 

a subspace  wi thou t  uncondi t ional  basis,  which admi t s  a Schauder  basis.  

Some o ther  in teres t ing  appl icat ions  and  corollaries follow. 

I n t r o d u c t i o n  

In this paper we present, for a large class of Banach spaces, a general con- 

struction of subspaces with a basis which have no local unconditional structure. 

The method works for a direct sum of several Banach spaces with bases which 

have certain unconditional properties. It  is then applied to Banach spaces with 

unconditional basis, to show that  if such a space X is of finite cotype and it does 

not contain an isomorphic copy of 12, then X contains a subspace with a basis 

and without local unconditional structure. As an immediate consequence we get 

that  if all subspaces of a Banach space X have unconditional basis then X is 12 
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saturated (i.e., every infinite-dimensional subspace of X contains a copy of/2). 

In particular, if X is a homogeneous Banach space non-isomorphic to a Hilbert 

space (i.e., X is isomorphic to its every infinite-dimensional subspace) then X 

must not have an unconditional basic sequence. 

We also discuss several other situations. Let us only mention here that our 

method provides a uniform construction of subspaces without local unconditional 

structure which still have Gordon-Lewis property in all Lp spaces for 1 _< p < ec, 

p # 2, and in all p-convexified Tsirelson spaces and their duals 1 <_ p < ec. 

The technique developed here is based on the approach first introduced by 

W. B. Johnson, J. Lindenstrauss and G. Schechtman in [J-L-S] for investigating 

the Kalton-Peck space, which was the first example of a Banach space which 

admits 2-dimensional unconditional decomposition but has no unconditional ba- 

sis. This approach was refined by T. Ketonen in [Ke] and subsequently general- 

ized by A. Borzyszkowski in [B], for subspaces of Lp, with 1 <_ p < 2. 

The essential idea of the approach from [J-L-S], [Ke] and [B] is summarized 

(and slightly generalized for our purpose) in Section 1. In the same section we 

also introduce all definitions and notations. Our general construction is presented 

in Section 2. The additional ingredient which appears here consists of an ordered 

sequence of partitions of natural numbers, which allows to replace some "global" 

arguments used before by "local" analogues. In Section 3 we prove the main 

application on subspaces of spaces with an unconditional basis. Other applica- 

tions and corollaries are discussed in Section 4. 

After this paper was sent for publication we learnt about a spectacular 

structural theorem just proved by W. T. Gowers. This theorem combined with 

our Theorem 4.2 and a result from [G-M] shows that a homogeneous Banach 

space is isomorphic to a Hilbert space, thus solving in the positive the so- 

called homogeneous space problem. More details can be found in the paper by 

Gowers [G]. 

1. Notation and preliminaries 

We use the standard notation from the Banach space theory, which can be found 

e.g., in [L-T.1], [L-T.2] and [T], together with all terminology not explained here. 

In particular, the fundamental concepts of a basis and a Schauder decomposition 

can be found in [L-T.1], 1.a.1 and 1.g.1, respectively. 

Let us only recall fundamental notions related to unconditionality. 
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A basis {ej }j in a Banach space X is called unconditional, if there is a constant 

C such that  for every x = ~ j t j e j  E X one has II~jcjtjejll  <_ Cllxll, for all 

sj = +1 for j = 1, 2 . . . . .  The infimum of constants C is denoted by unc ({ej}). 

The basis is called 1-unconditional, if unc ({ej}) = 1. 

A Schauder decomposition {Zk}k of a Banach space X is called C-unconditio- 

nal, for some constant C, if for all finite sequences {zk} with zk E Zk for all k, one 

has II ~ k  ekzkl[ <_ Cll ~ k  zk[I. For a subset K C N, by YK denote S-~n[Zk]ke K. 

A Banach space X has local unconditional structure if there is C >_ 1 such 

for every finite-dimensional subspace Xo C X there exist a Banach space F 

with a 1-unconditional basis and operators so: Xo --, F and Wo: F ~ X such 

that  the natural  embedding j :  Xo ~ X admits a factorization j = wo Uo and 

IlUoH IlWol[ _< C. The infimum of constants C is denoted by 1.u.st (X). 

We will also use several more specific notation. Let F be a Banach space with 

a basis {fz}l. For a subset A C N, by F [A we denote s--P-~-[fz]z6A. If F' is another 

space with a basis {f[}l, by I: F -+ F '  we denote the formal identity operator, 

i.e., I(x) = ~z  ttf[, for x = ~-~l ttft 6 F. With some abuse of notation, we will 

occasionally write [[I: F --+ F'[I = oc when this operator is not bounded. 
t We say that  a basis {ft}t dominates (resp. is dominated by) {ft }l, if the oper- 

ator I: F ~ F '  (resp. I :  F '  -+ F)  is bounded. If the bases in F and F '  are fixed 

and they are equivalent, by equiv (F, F ' )  we denote the equivalence constant 

(a) equiv (F, F ' )  = [ l I :  F ~ F'II III: F' ~ F[I; 

and we set equiv (F, F ' )  = cc if the bases are not equivalent. 

By D(F ® F ' )  we denote the diagonal subspace of F • F ' ,  i.e., the subspace 

with the basis {(fj + f~)/[[fj + f~l]}j; an analogous notation will be also used for 

a larger (but finite) number of terms. 

The following proposition is a version of a fundamental criterium due to 

Ketonen [Ke] and Borzyszkowski [B]. Since a modification of original arguments 

would be rather  messy, we provide a shorter direct proof. 

PROPOSITION i . i :  Let Y be a Banach space of cotype r, for some r < cx~, 

which has a Schauder decomposition {Zk}k, with dimZk -- 2, for k -- I, 2,... .  

If Y has local unconditionM structure then there exists a linear, not neccessarily 

bounded, operator T: span [Zk]k ~ span [Zk]k such that 

(i) T(Zk) C Zk for k = 1, 2,. . .;  
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(ii) Whenever for some K C N and for some C >_ 1, the decomposition { Zk }keK 

of YK is C-unconditional, then 

(2) lIT lye: YK --* YKll < 1.u.st (Y), 

where ¢ = ¢(r ,  C~(Y)) depends on r and the cotype r constant C~(Y) of 

Y only; 

(iii) infx HT ]z~ - AIz~ [] _> 1/8, for k = 1, 2 , . . . .  

The proof requires a fact already used in a more general form in [B]. For sake 

of completeness and clarity of the exposition, we sketch the proof here. 

LEMMA 1.2: Let Y be a Banach space of cotype r which has local uncondi- 

tional structure, and let q > r. For every e > 0 and every finite-dimensional 

subspace Yo C Y there exist a Banach space E with a 1-unconditional basis 

which is q-concave, and operators u: Yo ~ E and w: E --* Y such that the 

natural embedding j: ]So -* Y admits a factorization j = wu and []ulliIwi[ _< 

(1 + e) 1.u.st (Y). Moreover, the q-concavity constant orE  satisfies M(q)(E) <_ ¢ 

where ¢ = ¢(r, q, C~(Y)) depends on r, q and the cotype r constant of Y only. 

Proo~ Given e > 0 and Y0, let F be a space with a 1-unconditional basis {fi}i  

and let u0: Yo ~ F and w0: F ~ Y be such that  j = WoUo and [[woi] [[u0[] _< 

(1 + e) 1.u.st (Y). It can be clearly assumed that F is finite-dimensional, say 

dim F = N. Let {f*}i be the biorthogonal functionals. 

We let E to be R N with the norm [[-fIE defined by 

II(t ),ll = sup Ilwo( e tJ,)ll f o r ( t ~ ) E R  N. 
~i-----i-1 i 

We also set, u(x)---- __(f*(u°x))i' for x E  Yo and w(( t i ) i )  = ~ i t i w o f i ,  for 

(t,) • E. 
It is easy to check that wu(x) = x, for x • ]I0 and that  HuH < Hwo[i Huo[[ and 

I]wl[ = 1. Clearly, the standard unit vector basis is 1-unconditional in E.  Using 

the cotype r of Y, it can be checked that  E satisfies a lower r estimate with 

the constant C~(Y). Thus E is q-concave for every q > r with the q-concavity 

constant M(q)(E) depending on q, r and C~(Y) (cf. [L-T.2] 1.f.7). | 

Proof of Proposition 1.1: Assume that  Y has the local unconditional structure. 

It is enough to construct a sequence of operators T,,: span [Zk]k --* span [Zk]k, 

such that  for every n, the operator Tn satisfies (i) and 
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(ii') if Kn C {1 , . . . ,  n} and the decomposition {Zk}kEK,~ of  YK~ is C-uncondi- 

tional, then liT Iv~,: YK, ~ YK,, I[ <-- C2¢ 1.u.st (Y); 

(iii') inf~ ]]Tn Izk - AIz~ N >- 1/8, for k = 1, 2 , . . . ,  n. 

Then the existence of the operator T will follow by a standard diagonal construc- 

tion. 

Fix n and ¢ > 0, set q = 2r. Let E with a 1-unconditional basis {ej}j and 

operators u: YU ...... } --* E and w: E --~ Y be given by Lemma 1.2, such that  

j = w u  and I[ul[ [[w[[ _< (1 + E) 1.u.st (Y); moreover, E is 2r-concave. 

Let Pk: Y ~ Zk be the natural projection onto Zk, for k = 1 ,2 , . . . .  For a 

sequence of signs O = {Oj}, with Oj = =kl for j = 1 ,2 , . . . ,  define Ao: E --* E by 

Ao(y) = ~'~d Ojtjej, for y = ~'~j t jej  E E. Then [IAo[[ = 1. 

For every k = 1, 2 , . . .  pick a sequence of signs Ok such that  

sup inf IIPkwAouPk - AIz~ II <- (4/3) inf IIPkwAo~ uPk -- MZ~ !1" 
0 

Define Tn: span [Zk]k --* span [Zk]a by 

T.(y) = ~ PkwAo~ uPk(y)  
k----1 

for y = Z zk E span [Zk]k. 
k 

Clearly (i) follows just from the definition of Tn. To prove (ii'), fix Kn C 

{1 , . . . , n} .  Let rk denote the Rademacher functions on [0,1]. Since (E, II" II) 

is a 2r-concave Banach lattice with the 2r-concavity constant depending on r 

and C~(Y), and also the decomposition {Zk}keK. of YK.  is C-unconditional, by 

Khintchine-Maurey's inequality (cf. e.g., [L-T.2], 1.d.6) we have, for y E YK,., 

IlT  ly, . (Y)I] 
k:l kEK~ 

: ~001 (k~EKn rk(t)pk) (k~cKrk(t)wAokuPk(Y)) dt 

O~t_~l kEK,~ EK,~ 

kEK. 

kEK~ 
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,,/o 1 <_ C M2[Iw rk(t)uPk(y) dt 
k E K n  

<_ C M211wll ltull ~ rk(t)Pk(y) dt 
k E K a  

< C~M ~ (1 + ~) 1.u.st (Z)IlY]I. 

The constant M depends on r and M(2r)(E), hence, implicitely, on r and Cr(Y); 

so the function ¢ so obtained satisfies the requirements of (ii). 

To prove (iii'), fix an arbitrary k = 1, 2 , . . . , n .  Consider the &dimensional 

space H of all linear operators on Zk and the subspace H0 = span [Iz~] spanned 

by the identity operator on Zk. Consider the quotient space H/Ho and for R • H,  

le t /~ be the canonical image of R in H/Ho. 
Denote the biorthogonal functionals to the basis {ej}j in E by {e~}j and 

consider operators Rj = Pkw(e~ ® ej)uPk on Zk. Since dimRj(Zk)  = 1 < 2, it 

is easy to see that for every j = 1, 2 , . . . ,  one has 

IIRil{ = i~f llRj - .~Izklt >_ (1/2)lIRjll. 

Also recall that  if F is an m-dimensional space then for any vectors  {Xj}j in 

F one has 

oSUpl ~j Ojxj >_ ( 1 / m ) ~ .  HxjlI. 

This is a restatement of the estimate for the 1-summing norm of the identity on 

F,  7rl(IF) < m, and it is a simple consequence of the Auerbach lemma (cf., e.g., 

iT]). 
So by the definition of T,~ and by the choice of Ok and the above estimates we 

get 

inf IITn [zk - AIz~ I] >- (3/4) supinf HPkwAouPk - AIz~ II 

: ( 3 / 4 )  :~Pl ~jOjRj _>(1/4)~IIR~II 
0 -  . j 

> ( l / 8 ) ~  IIR~II >_ (1/8)11 ~-'~ Rill = D / 8 ) l l l z ~ l l  = 1 / s ,  

J J 

completing the proof. | 

Finally let us introduce notations connected with partitions of the set of natural 

numbers N, which are essential in the sequel. A subset A c N is called an interval 
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if it is of the form A = {i I k < i < n}. Sets A1 and A2 are called consecutive if 

max Ai < min A j, for i, j = 1, 2 and i # j .  A family of mutually disjoint subsets 

A = {Am}m is a partition of N, if Um Am = N. 

For a partit ion A = {Am}m of N, by £(A)  we denote the family 

(3) £ ( A ) = { L C N  [ [ L N A m l = l f o r m = l , 2 , . . . } .  

If A I = A / { m}-~ is another partition of N, we say that A ~- A ~, if there exists a 

partition f l (A' ,  A) = {Jm}m of N such that 

(4) min Jm < min Jm+l and A~ = U Aj for m = 1, 2 , . . . .  
jEJ~ 

In such a situation, for m = 1, 2 , . . . , /E (A~,  A) denotes the family 

(5) /~(A~,A) = { K  C A ~  I ] K ~ A j l  = 1 f o r j  • Jm}. 

Finally, if A~ = {A~,m}m, for i = 1, 2 , . . . ,  is a sequence of partitions of N, with 

A1 >- . ' -  ~- Ai >- . . . ,  we set, for m = 1 ,2 , . . .  and i = 2 ,3 , . . .  

(6) /Ci,m = ]C(A~,m, Ai-1). 

2. G e n e r a l  c o n s t r u c t i o n  o f  subspaces without local unconditional 

s t r u c t u r e  

We will now present an abstract setting in which it is possible to construct spaces 

without local unconditional structure, but which still admit a Schauder basis. As 

it is quite natural, we work inside a direct sum of several Banach spaces with 

bases, with each basis having certain unconditional property related to some 

partitions of N. The construction of a required subspace relies on an interplay 

between a "good" behaviour of a basis on members of the corresponding partition 

and a "bad" behaviour on sets which select one point from each member of the 

partition. (Recall that the notation ~i,m used below was introduced in (6).) 

THEOREM 2.1: Let X = F1 @ ""  • 1'4 be a direct sum of Banach spaces of  

cotype r, for some r < c~, and let {fi,l}l be a normalized monotone Schauder 

basis in Fi , for i = 1 , . . . ,  4. Let A1 ~- . . .  ~- A4 be partitions of  N, Ai  = { Ai,m } m 

for i = 1 , . . . ,  4. Assume that there is C >_ 1 such that for every K E lCi,m with 

i = 2, 3, 4 and m = 1, 2 , . . . ,  the basis {fs,l}ZeK in Fs [K is C-unconditional, for 
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s = 1 , . . . ,  4; moreover, there is C > 1 such that for i -= 1, 2, 3 and m = 1, 2 , . . .  

we have 

(7) IlI: Fi IA,,m --* Fi+l IA,,.~ l[ ~ ~" 

Assume finally that one of the [ollowing conditions is satisfied: 

(i) there is a sequence 0 < 6m < 1 with 6,~ ~ 0 such that for every i = 1, 2, 3 

and m = 1, 2 , . . .  and every K E/Ci+l,m we have 

(8) IlI: D(F1 ® . . .  ® Fi) IK --* Fi+l IKII >- 6~1; 

(ii) there i s a s e q u e n c e 0  < 6m < 1 with 6m ~ 0 and V" 61/2 /-.,m m ~ "T ~ 0<3 such 

that for every i = 1,2,3 and m = 1 ,2 , . . .  and every K E/Ci+l,m we have 

(9) II I: Fi-kl IK --~ Fi [KII ~-- ~n  1. 

Then there exists a subspace Y of X without local unconditional structure, but 

which still admits a Schauder basis. 

Remarks: 1. The space Y will be constructed to have a 2-dimensional Schauder 

decomposition. If the bases {fi,z}g are unconditional, for i = 1 , . . . , 4 ,  this 

decomposition will be unconditional. 

2. Recall that a space which admits a k-dimensional unconditional decompo- 

sition has the GL-property (cf. [J-L-S]) (with the GL-constant depending on k). 

Therefore the subspace Y discussed in Remark 1 above has the GL-property but 

fails having the local unconditional structure. 

Proof: We will define 2-dimensional subspaces Zk of X which will form a 

Schauder decomposition of Y = span [Zk]k. This decomposition will be C'- 

unconditional on subsets associated with the partitions A 1 , . . . ,  A4, for some C' 

depending on C. We shall use Proposition 1.1 to show that  if Y had the local 

unconditional structure then, letting ~ -- ~(r, C~(X)) to be the function defined 

in this proposition, we would have 

(10) 1.u.st (Y) _> g6~ -~' 

for an arbitrary t = 1 ,2 , . . . ;  in case (i) we have g > (21433C4C2¢) -1 and 

a = 1/3; in case (ii) we have ~ > (213(1 + 43,)C3C2¢) -1 and a = 1/2. This is 

impossible, which will conclude the proof. 
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For k = 1, 2 , . . . ,  vectors xk and Yk spanning Zk will be of the form 

Xk = Oq,kf l ,k  + ' ' "  + O~4,kf4,k, 

Yk = a~,kfx,k + ' ' "  + a~,kf4,k, 

such tha t  for k = 1, 2 , . . .  and any scalars s and t, we will have 

(11) (1/2)  max(Isl, Itl) <_ IIsxk + tykll <_ 4(tsl + Itl). 

Set Zk = [xk, yk], for k = 1, 2 , . . . .  Clearly, {Zk}k is a 2-dimensional Schauder 

decomposit ion for Y, in par t icular  Y has a basis. Moreover, for every i = 2, 3, 4 

and m = 1 , 2 , . . .  and every K E K:~,m, the decomposi t ion {Zk}keK is 4C- 

unconditional.  

Assume that  Y has the local uncondit ional  structure.  Let  T be an opera tor  

obtained in Proposi t ion 1.1. In part icular,  T satisfies (2) for every K E /Ci,m, 

and every i = 2, 3, 4 and m = 1, 2,.  .... Let 

ck dk 

denote the mat r ix  of T Iz~ in the basis {xk, Yk}, for k = 1, 2 , . . . ,  i.e., we have 

T(sxk + tyk) = (sak + tbk)xk + (sck + tdk)yk. Comparing the opera tor  norm of 

a 2 x 2 mat r ix  with the l ~ - n o r m  of the sequence of entries, and using (11), we 

get tha t  condition (iii) of Proposi t ion 1.1 implies that ,  for all k = 1, 2 , . . . ,  

(12)  i n f m a x ( l a k  - A[, ldk - A I, Ibkl, Ickl) ?_ 2 -S in f  lIT Izk - XIzkl[ >_ 2 - s .  

For the rest of the argument  we consider cases (i) and (ii) separately. We star t  
~ / 3  with (i). Let ~m . . . .  for m = 1, 2 , . . . .  For k E A4,t, with t = 1, 2 , . . . ,  put  

+Tt f4,k (13) xk = fl ,k +Ttf3,k 2 

Yk f2,k 2 = +Tt f4,k. 

Obviously, (11) is satisfied. Fix an arb i t rary  t = 1, 2 , . . . .  For i = 1, 2, 3, let 

AJ~ = {m l lA4m C A4,t}. Note tha t  (4) yields tha t  m i n M i  > t for i = 1,2,3.  

For every m E AA2 pick B E K:2,m. By (8) we have 

HI: F1 [B --* F2 IBI] -> 7~3; 
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on the other hand, lifl,zll = IIA,zll = III(fl:)ll. By continuity, there exists a 

sequence of scalars {~k}keB such that II ~ k e ~  ]Jlcfl,kll : I and II ~ k e B  ~kf2,kll = 

7 ;  1 . Then, by (7) and (13) we have 

kEB k6B k6B k6B 

_ 2 ~ 2  _ 
< l+(,~,~+~t ) ~Z~A,~ <3~ ~, 

k6B 

while 

k6B k6B 

> E/3kckf2 ,k  > C  -1 inf  [ca[ E / 3 k f 2 , k  ~ > c - l ' ) ' t  1 
-- -- kEB -- 

kEB kEB 

inf Ickl. 

This implies, by (2), that for every m C A42 there exists 1 E A2,m such that 

]ctl ~ 3 42C3C2¢ ~/t 1.u.st (Y). Denote the set of these l's by L~ and observe that 

L2 6 £(A2)]M2. If we had ]cl[> 2 -1° for some l E L~, then (10) would follow. 

Therefore assume that ]czl _< 2 - l °  for all l E L2. 

For every m E A43, set B = L2 N A3,m. Then B 6 1C3,m and by (8) there exists 

a sequence {~k}keB such that 

E ~ k (  :l'k"I- f2'k "~ 
k~B \ ~ + f--~,kll ] II = 1 and keBE ¢]kf3,k = "/t 2. 

Observe that the basis {(fl,k + f2,k)/ltfl,k + f2,kll}keB is 2C-unconditional for 

every B 6 K:3,m. Thus, 

E /~kf2 ,k  ~ E /~k(fl,k + f2,k) ~ 4C. 
k6B k6B 

Hence, 

and 

k6B kEB k6B 

kfiB kfiB 

>_ ~/t E/~kbaf3,k  >_ c - l ~ ' t  1 
kEB 

inf ]bkt. 
k6L2NAs,~ 
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Therefore,  using (2) again, for every m E - / ~ 3  pick l E L2 n A3,m such tha t  

]bl] <_ 42(4C + C)C3¢'~t 1.u.st (Y). Denote  the set of these l 's by L3 and assume 

as before tha t  ]bzl __ 2 -1° for all 1 E L3. Moreover, L3 C L2 and L3 E £ (A3) ] •3 .  

Finally, consider K = L3 n A4,t E K:4,t and pick a sequence {13k}keg such tha t  

Zg,( S,k÷f2k+S3,k - 3  

, c~  \ IIS,,, + S~.,, + S-~,~II/II = 1 and ,~KE fl'£,k = % • 

Since {($1,~ + $2,~ + $~,k)/t15~,~ + $~,k + S~,kll)~c~ is 3C-~eo~dit ional ,  fo~ every 
K E ]~4,t, we have, for i = 1, 2, 3, 

z~S,,k _< ~ z~(Sl,~ + s~,~ + S~,~) < 32c. 
kEK kEK 

Thus, 

kEK kEK kEK kEK 

Moreover, since ]ck[ _< 2 -1° and [bk[ _< 2 -1° for k E L3, by (12) we have 

(14) ]ak - bk + ck - dk[ _> 2 -9 for k E L3. 

Therefore  

kEK kEK 

-> "h2 E j3k((ak -- bk) + (ck - dk))f4,k 
kEK 

_> C-12-%,~ -1. 

Using (2) once more we get 3342C3¢ 1.u.st (Y) > C-12  - 9 - - 1  - "rt , which implies 

(10). This completes the proof  of case (i). 

In case (ii) the proof  is very similar and let us describe necessary modifications. 

Set "/m : ~ 1 / 2  for m = 1, 2, For k 1, 2,. and k E A2 m n A3 s, for some m . . . .  = . .  , , 

m = 1 , 2 , . . .  and s = 1 , 2 , . . . ,  set 

(15) xk = %f2,k +f3,k +f4,k 

Yk = 7mfl,k +f3,k. 

Again, (11) is satisfied. Fix an arb i t rary  t = 1 ,2 , . . . ,  and define M~, for 

i = 1 ,2 ,3  as before. Using the fact tha t  ]1I: F2 ]K ~ F1 fg]l--> 7m 2, for every 
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K • /C2,m and every m • A/I2, one can show, using (7) and (2) in a similar way 

as before, that there is a set L2 = {lm}meM2 • £(A~)1~2 such that 

(16) Iczm I _< 3 42C3C2¢~'m 1.u.st (Y) for m • A/12. 

One can additionally assume that [cl,~ [ _< 2 -10 for all m • M2, otherwise, since 

minA42 > t implies 7-~ < 7t, we would immediately get (10) with a = 1/2. 

Now for every s • AA3 consider the set B = L2 N A3,~ • /~3,~, and pick a 

sequence {flk}keB such that 

E J~kf3,k ---- 1 and E flkf2,k >__ "Ys 2. 
kEB kEB 

If M2, ,  denotes the set of indices m • A42 such that lm • L2 N A3,s = B ,  then 

(17) E zkyk _< E 7 m l Z l ~ l + 1 < 2 7 + 1 '  
kEB mE.A.42,~ 

where the first term in the estimate is obtained by first using the triangle 

inequality and then using the fact that since {f3,t.~ }meM2., is a monotone basic 

sequence, then ]~l~ [ < 2 for all lm • B. 

We also have 

kEB kEB 

> C-1% inf Ibkl ~ ~kA,k 
- -  kEB 

kE L2f'lA3,s 

> C -  13,~ -1 inf Ibk[. 
kEL2f3Aa,a 

! Thus there exists a set L3 • £(A3)IM3, L3 = {/~}~eM3, such that L3 C L2 and 

(18) Ibz, I _< 42(2~ + 1 )c3¢% 1.u.st (Y) for s • M3; 

and since minAA3 >_ t implies % <_ ~/t, one can additionally assume that Ibl:l _< 

2 -1°, for all s E A43. 

Finally set K = L3 N A4,t E lC4,t. Pick a sequence {~k)keg such that 

II ~-~-keg •f4,kll = 1 and H EkEK ~kf3,kH --> 7 t  2" Then, by the triangle inequality 

and by the monotonicity of the basis {f4,k}k we get, similarly as in (17), 

E kIxk- k/ _<2 E  m+2 E E k1,,k 
kE K mE.]~2 s E . M 3  kE K 
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On the other hand, by (12), (16) and (18) we again have (14). Thus 

kEK 

_> 

Using (2) we get 1.u.st (V) >_ 

completing the proof of case (ii). 

> 

]3k(ak -- bk) + (ck - dk)f3,k 
k@.K 

C-12-9 Z ~3kf3,k ~ C-12-97t2- 
leEK 

(213(1 + 4"/)63¢)-1"/t -2, hence (10) follows, 
| 

3. Subspaces of spaces with unconditional basis 

Our main application of the construction of Theorem 2. I is the following result 

on subspaces of spaces with unconditional basis. 

THEOREM 3.1: Let X be a Banach space with an unconditional basis and of 

cotype r, for some r < oo. I f  X does not contain a subspace isomorphic to 12 

then there exists a subspace Y of X without local unconditional structure, which 

admits a Schauder basis. 

In particular, every Banach space of eotype r, for some r < co, contains either 

12 or a subspace without unconditional basis. 

We present now the proof of the theorem, leaving corollaries and further 

applications to the next section. 

The argument is based on a construction, for a given Banach space X, of a 

direct sum inside X of subspaces Fi of X, and of partitions Ai of N such that 

Theorem 2.1 can be applied. This construction requires several steps. 

The first lemma is a simple generalization to finite-dimensional lattices of the 

fact that the Rademacher functions in Lp are equivalent to the standard unit 

vector basis in 12. 

LEMMA 3.2: Let E be an N-dimensional Banach space with a 1-unconditional 

basis {ej}j and for 2 _< r < oc let C~(E) denote the cotype r constant o rE .  I f  

rn < log 2 N then there exist normalized vectors f l , . . . ,  f,~ in E, of the form 

(19) s , =  f o r l =  1, . . ,m,  
J 

for some sequence of scalars {a t } and s~ z) = +1 for I = 1 , . . . ,  m and j = 1 , . . . ,  N; 

and such that 

(20) equiv (span [f,], l r )  _< C, 
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where C depends on r and on the cotype r constant of E. 

Proo~ Since E is a discrete Banach lattice, the cotype r assumption implies that 

E is q-concave, for any q > r (cf. [L-T.2]). Setting e.g., q = 2r, the q-concavity 

constant of E depends on r and Cr(E). By a lattice renorming we may and will 

assume that this constant is equal to 1 (cf. [L-T.2] 1.d.8); the general case will 

follow by adjusting C. 

For 1 _< p < oo, let [[. [[Lp be the norm defined on R N by [It[[Lp = (N -1 ~N=I 

]tj ]P)l/v, for t = (tj) e ~ g .  It is well known consequence of Lozanovski's theorem 

(see IT], 39.2 and 39.3 for a related result) that there exist ozj > 0 ,  j = 1 , . . . ,  N, 

such that 
N 

(21) lltllL, <_ II ~ , t s e j t l  ___ IttllLq for t = (tj) • R N. 
j = l  

Fix an integer m < log 2 N. By Khintchine's inequality there exist vectors 

rt = {rt(j)}g=> with rt(j) = -t-1 for j = 1 , . . . , N ,  1 = 1 , . . . , m ,  such that for 

every (bt) • ~m we have 

rn m rn rn 

(22) 2-1/=(~,]b,12) 1/= < I I~b,r, llL~ < II ~ b,r, llLq <_ c~(~_,lb, l=) ~/~. 
1=1 l=1 l = 1  l=1 

Setting fz N . = ~ j = l r l O ) a j e j ,  for l = 1 , . . . , m ,  we get, by (21), 

m m N m m 

II E bzrlllL~ ~_ II E bzfzll = I[ E a J ( E  blrz(j) )ejl] ~ II E bzrzllLq, 
/ = 1  / = 1  j----i /----i / = 1  

for every (bl) • R m. This combined with (22) completes the required estimate. 

| 

Remark: As it was pointed out to us by B. Maurey, Lemma 3.2 could be replaced 

by the contruction of L. Tzafriri [Tz], which implies the existence of a function 

~(N),  with ~(N)  ~ oc as N ~ c% such that for m <_ ~(N)  every N-dimensional 

space E as in the lemma contains normalized vectors f l , . . . ,  fm satisfying (20), 

which are of the form fl = (~)-~j +e j, with an appropriate constant c~. 

The next proposition is the key for our argument. To simplify the statement, 

let us introduce one more notation. Given a partition A = {Am}m of N into 

consecutive intervals and a space F with a normalized Schauder basis {fl}t and 

C _> 1, we call a pair {A, F} C-regular, if the following conditions are satisfied: 
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(i) e q u i v ( F I A ~ ,  l[ A~I) < C for m =  1 ,2 , . . . ;  

(ii) for every L E £ (A) ,  the basis {fl}teL in F [L is 1-unconditional (here £ (A)  

is as in (3)); 

(iii) for a rb i t rary  L,L '  E £ ( A ) o n e  has equiv (F[L, FIL, ) = 1. 

Observe tha t  condit ion (iii) means tha t  if L {lm},~, L' l' = = { re}m, with 

Ira, l "  E Am for m = 1, 2 , . . . ,  then for every sequence of scalars (bm) one has 

(23) E b m f l m  = E b m f l ,  . 
m m 

PROPOSITION 3.3: Let El, E2 • • • be Banach spaces of  cotype r, for some r < oc. 

Let  {ei,j}j be a 1-unconditional basis in El, and assume that  no sequence of 

disjointly supported vectors in E1 ® "" G E i  is equivalent to the standard unit 

vector basis in 12, for i -- 1, 2 . . . . .  Then there exists C, depending on r and the 

cotype r constants  of El, such that  there exist subspaces Fi C Ei with normal- 

ized Schauder bases {fi,l}z, and partitions Ai = {Ai,m}m of N into consecutive 

intervals, for i = 1, 2 , . . . ,  with A1 ~ A2 ~- " ' ,  satisfying the following: for each 

i = 1, 2 , . . .  {Ai, Fi} is C-regular and one of  the following mutually exclusive 

conditions is satisfied: either for every L E £ (A i )  one has 

(24) IlZ: 12 ILII = 

or for every L E £ (A i )  one has 

(25) III: 12 -~ Fi ILll < oo. 

Furthermore, one also has 

(iv) If(24) holds for some i, then the partition A~+I = {A~+Lm}m satisfies 

(26) i n f i n f { 2 - a m l l l : l [ g l ~ F i l K I I  K E ~ I + I , m } > C .  

On the other hand, let M denote the set (which may  be empty) of  all s E N 

such that for every L E £:(As) one has II/: 12 -~ Ys ILII < I f i  E M,  put 

Mi = M n { 1 , . . . ,  i}; then the partition Ai+l  = {Ai+l,m}m satisfies 

(27) inf inf {2-3m111: D (  E ®Fs)[K ~ l~Klll K E ~i+l,m} ~__ C. 
sEMi 

Proof  In the first par t  of the proof  we show tha t  given space E of cotype r with 

a 1-unconditional basis {ej}j,  and a par t i t ion A = {Am}m of N into consecutive 
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intervals, there exists a subspace F C E with a normalized Schauder basis {ft}l 

such that {A, F} is C-regular, for an appropriate constant C, and that either 

(24) or (25) is satisfied for every L E £(A). 

For an arbitrary m = 1 ,2 , . . . ,  let km = IAml and let E (m) = 

span{ej I 2k"~ < J < 2kin+l} • Since d i m e  (m) > 2 k~, by Lemma 3.2 there 

exist vectors fl C E (m), for l E Am, such that 

(28) equiv (span Ill]teA,., 12 k'~) _< C; 

and there is a sequence {aj} of real numbers such that the fl 's are of the form 

2km+l 

(29) f l =  E +o~jej for I E Am, m =  l ,2  . . . . .  
j=2km+l 

We let F = span [fl]l. Then (i) is implied by (28). Next observe that ft and 

ft, have consecutive supports, whenever l E Am and l' E Am, and m ~ m'. 

This and (28) easily yield that {ft}t is a Schauder basis in F. Also, {fl}teL is a 

1-unconditional basis in F IL, for every L E £(A),  which shows (ii). 

By (29) we get that if (bin) is a scalar sequence then for every L = {/m}m E 

£(A),  the vector ~ , ~  bmftm is of the form 

2km+l 

Ebm E 
m j=2k,~ -i-1 

-4-o~j ej; 

a specific choice of the lm's which constitute the set L effects only the choice of 

the signs in the inner summation. Since the basis {ej} is 1-unconditional, (23) 

follows, hence (iii) follows as well. 

Finally observe that  for a fixed L E £(A),  exactly one of conditions (24) and 

(25) holds. Moreover, by (iii), the norms of the formal identity operators involved 

do not depend on a choice of the set L E £(A).  

We now pass to the second part of the proof, the inductive construction of A~'s 

and Fi's, which ensures also condition (iv). Let Al,m = {m} for m = 1, 2 , . . .  and 

let A1 = {Al,m}m. 

Assume that  i > 1 and that  partitions A1 ~- . . .  ~- A~ and subspaces F1 , . . . ,  

Fi-1 have been constructed to satisfy conditions (i)-(iv). Let Fi C E~ be a 

subspace constructed in the first part of the proof for A _-- A~. The construction 

of A~+I depends on which of two, (24) or (25), holds for Fi. 
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Assume first that  (24) holds and fix an arbitrary set L E £(A~). Enumerate 

L = {lj}j with lj E Ai,j for j = 1, 2 , . . . .  There exist 1 = j0 < j l  < "'" < jm < "'- 

such that if Jm = {jm-1 _< j < jm}, then 

(30) [I ~: ~2J'~] -'-+ Fi IL ,j,~ II ~ C223m 

We then set 

(31) 

for m = 1, 2, . . . .  

A~+l,m = U Ai,j for m = 1 ,2 , . . . .  
j E J,,,, 

By (23) and (30) it is clear that (26) is satisfied in this case. 

Assume now that (25) holds, so i E M. There is a constant C ~ such that  for 

all s E Mi the estimate IlI: 12 ~ F8 ILII < C' holds for all L E £(A8); hence also 

for all L E ~(Ai), since sets fl'om Z(Ai) are subsets of sets from £~(A~), for every 

s < i. Fix an arbitrary L E t:(Ai). We then have 

1[I: 12 --* D (  E @F~)ILl[ < IMil C'' 
sEMi 

Note that if l, I' E L E Z:(AJ and l # l' then f~,t and f~,t, have consecutive 

supports, hence {f~,t}lCL forms a block basis of {e85}j, for s E M~. Therefore by 

our assumptions, the basis {~ZM, f~,Z}ZEL in D(~EM, ®F~) is not equivalent 

to the standard unit vector basis in 12. Thus 

(32) {lI: D( E @F~) tL --* 12]l = oc. 
sEMi  

Now the construction of a partition Ai+l satisfying (27) is done by formulas 

completely analogous to (30) and (31), in which the use of (24) is replaced by 

(32). i 

Finally, the proof of the main result follows formally from Proposition 3.3. 

Proof of Theorem 3.1: Write X as an unconditional sum X = ~ i  ®Ei, of 

13 spaces E~, each with a 1-unconditional basis {e~5} j. Let A1 ~- . .-  ~- A13 be 

partitions of N and F~ C Ei be subspaces with Schauder bases {fi,t}l, constructed 

in Proposition 3.3. Renorming the spaces F~ if necessary, we may assume that  

the bases {f~,z}l are monotone. 

Now the C-regularity properties imply all the preliminary assumptions of 

Theorem 2.1, including (7). To prove the remaining conditions (i) or (ii) ob- 

serve that  either there exist four consecutive spaces {F~ }k satisfying (25), or 

(24) holds for some three (not necessarily consecutive) spaces {F~ }k. 
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In either case, we let hk = A~ and F~ = F~,  for k = 1 , . . . ,  4 (in the latter 

case we set i4 = i3 + 1). 

It is easy to check that in the former case, (25) yields (27), while in the 

latter case (24) yields (26). Thus the remaining assumptions of Theorem 2.1 

are satisfied with 6,~ = 2 -3m, which concludes the proof. | 

4. Coro l la r i es  a n d  f u r t h e r  app l i ca t i ons  

Recall a still open question whether a Banach space whose all subspaces have 

an unconditional basis is isomorphic to a Hilbert space. From results on the 

approximation property by Enflo, Davie, Figiel and Szankowski, combined with 

Maurey-Pisier-Krivine theorem, it follows that such a space X has, for every 

¢ > 0, cotype 2 + c  and type 2 - ¢  (cf. e.g., [L-T.2], 1.g.6). Theorem 3.1 obviously 

implies that X has a much stronger property: its every infinite-dimensional sub- 

space contains an isomorphic copy of 12. A space X with this property is called 

/2-saturated. 

THEOREM 4.1: Let X be an infinite-dimensional Banach space whose all sub- 

spaces have an unconditional basis. Then X is 12-saturated. 

Another well known open problem, going back to Mazur and Banach, concerns 

so-called homogeneous spaces. An infinite-dimensional Banach space is called 

homogeneous if it is isomorphic to each of its infinite-dimensional subspaces. The 

question is whether every homogeneous Banach space is isomorphic to a Hilbert 

space. The same general argument as before shows that a homogeneous space X 

has cotype 2 + e and type 2 - e, for every e > 0. W. B. Johnson showed in [J] 

that if both X and X* are homogeneous and X has the Gordon-Lewis property, 

then X is isomorphic to a Hilbert' space. More information about homogeneous 

spaces the reader can find in [C]. The following obvious corollary removes the 

assumption on X*, however it requires a stronger property of X itself. 

THEOREM 4.2: I[ a homogeneous Banach space X contains an infinite uncon- 

ditional basic sequence then X is isomorphic to a Hilbert space. 

Let us recall here that  it was believed for a long time that every Banach space 

might contain an infinite unconditional basic sequence. This conjecture was 

disproved only recently by W. T. Gowers and B. Maurey in [G-M], who actually 

constructed a whole class of Banach spaces failing this and related properties. 
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Let us now discuss some easy consequences of the main construction, which 

might be of independent interest. 

COROLLARY 4.3: Let X = F1 • ""  @ F4 be a direct sum of Banach spaces 

of cotype r, for some r < oo, and assume that Fi has a 1-unconditional basis 

{fi,z}~. for i = 1 , . . . , 4 .  Assume that the basis {f~,l}t dominates {fi+l,l}l, and 

that no subsequence of {fi,z}l is equivalent to the corresponding subsequence 

of {fi+l,z}t, for i = 1, 2, 3. Then there exists a subspace Y of X without lo- 

ca/uncondit ional  structure, which admits an unconditional decomposition into 

2-dimensional spaces. 

Proof: Let A1 ~- . . .  ~ A4 be arbitrary partitions of N into infinite subsets 

{A~,,~}. The domination assumption implies (7). On the other hand, the second 

assumption allows for a construction of partitions which also satisfy (9). Hence 

the conclusion follows from Theorem 2.1 and Remark 2 above. | 

Remark: In fact, Corollary 4.3 can be proved directly from Proposition 1.1. To 

define xk and Yk spanning Zk, let A2 = {Bm}m be any partition of 1~1 into infinite 

sets and write each Bm as a union B m =  [.J,~ B,~,,~ of an infinite number of infinite 

sets Bm,n. (Using the natural enumeration of N x N, we get this way a partition 

A1 = {Bm,~}m,n with A1 >- A2.) Then for k C Bin,n, with m, n = 1, 2 , . . .  put 

xk = 2-me2,k q-e3,k +e4,k 

Yk = 2-m-nel ,k  -t-e3,k. 

The rest of the proof is the same as in case (ii) of Theorem 2.1. 

If {xl} is a basic sequence in a Banach space X, and 1 < p < oc, we say that 

lp is crudely finitely sequence representable in {x~} if there is a constant C _> 1 

such that for every n there is a subset Bn c N such that {xi}ieB, is C-equivalent 
n to the unit vector basis in Ip. 

COROLLARY 4.4: Let X be a Banach space of cotype r, t'or some r < cx~, and 

with a 1-unconditional basis {ez}l; let 1 <_ p < oo. Assume that no sequence 

{x j } j  of disjointly supported vectors of  the form xj  = ~ l e L j  ez, where [Ljl <_ 3 

for j = 1, 2 , . . . ,  is equivalent to the unit vector basis of l v. Moreover assume that 

X has one of the following properties: 

(i) Ip is crudely finitely sequence representable in {el}l, and the basis {el}l 

either is dominated by or dominates the standard unit vector basis in Ip; 
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(ii) lp is crudely finitely sequence representable in every subsequence of { ez }t. 

Then X contains a subspace Y without local unconditional structure, which 

admits a 2-dimensional unconditional decomposition. 

Proof: First observe a general fact concerning a basis {ez}t whose no subsequence 

is dominated by the standard unit vector basis in lp. An easy diagonal argument 

shows that  if a partit ion A = {Aj} j  of N into finite sets is given then for an 

arbitrary M and every J0 E N there is Jl > jo such that for any set K c N such 

that  Igl = j l - j o  and IKNAjl = 1 for jo  < j _< j l ,  one has IlI: l [gl ~ E [g[I >--- M. 

{ m}m of N, with In particular, given constant C, there exists a partition A ~ = A' 

A ~ A' such that  for every m = 1, 2 , . . .  and for every K E K:(A~, A) one has 

(33) III: zlpKI ~ EIKI[ ~ c 2  3m 

Now, in case (i), write X as a direct sum E1 • -.- • E4, such that each Ei 

has a 1-unconditional basis {e~,t}~. Assume that the basis {et}l dominates the 

basis in Ip, hence so does every basis {ei3}t. Using the general observation above, 

we can define by induction partitions A1 ~- "-" >- A4 and subsequences {fi,j}j 

of {ei,~}z, so that  for all k and all A = Ak,m E Ak, sequences {fik,j}jeA are 

C-equivalent to the standard unit vector basis in lip AI, and at the same time, the 

spaces span [f~,j]jeg, with K E K:k+l,m, satisfy the lower estimate (33). Thus 

(9) is satisfied (with 5,~ = 2-3'~). 

If the basis {el}z is dominated by the basis in lp, so is every basis {e~,z}z, and 

also all bases in D(E1 G . . .  • E~), for i = 1, 2, 3. An analogous argument as 

before, which additionally requires the assumption on sequences {xj }, leads to a 

construction of partitions satisfying (8). Then the existence of the subspace Y 

follows from Theorem 2.1 and Remark 1 after its statement. 

In case (ii), write X = E1 @ . . .  @ ET. By passing to subsequences we get 

that for each i, each subsequence of the basis {e~,t}l, either is dominated by or 

dominates the standard unit vector basis in lp, for i = 1 , . . . ,  7. Therefore there 

is a set I = { i l , . . .  ,i4} such that for all i E I,  the bases {e~,t}l have the same, 

either former or latter, domination property. Then the proof can be concluded 

the same way as in case (i). 1 

For 1 _< q < c~, the space Lq([0, 1]) contains a subspace isomorphic to X = 

( ~ n  Ol])q, which, for q ¢ 2, satisfies the assumptions of Corollary 4.4 (i) for 

p = 2. Therefore Lq([0, 1]) contains a subspace without local unconditional 
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structure but which admits a 2-dimensional unconditional decomposition. By 

Remark 2 in Section 2, this subspace has the Gordon-Lewis (GL-) property. For 

1 < q < 2, this gives a somewhat more elementary proof of Ketonen's result [Ke]. 

For 2 < q < ec the construction seems to be new. Ketonen's result could be 

also derived from Corollary 4.3 by noticing that in this case the space Lq([0, 1]) 

contains a subspace isometric to (lql G . . .  ~) lq4) q, for 1 _< q _< ql < "'" < q4 < 2 

(cf. e.g., [L-T.2], 2.f.5). 

Corollary 4.4 can also be applied to construct subspaces without local uncon- 

ditional structure in p-convexified Tsirelson spaces T(p) and in their duals. This 

solves the question left open in [K]. The spaces T(2) and T(*2) provide the most 

important examples of so-called weak Hilbert spaces, and they were discussed in 

[P]. For general p and notably for p = 1, these spaces were presented in detail in 

[C-S]. First construction of a weak Hilbert space without unconditional basis was 

given by R. Komorowski in [K] by a method preceeding the technique presented 

here. 

COROLLARY 4.5: The p-convexified Tsirelson space T(p), for 1 <_ p < oc, and 

the dual Tsirelson T~p), for 1 < p < oc, contain subspaces without local uncon- 

ditional structure, but which admit 2-dimensional unconditional decomposition; 

in particular they have the Gordon-Lewis property. 

Proof." The spaces T(p) and T~p) satisfy the assumptions of Corollary 4.4, both 

(i) and (ii), for p and p', respectively. | 
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